InformedRRT¶
python_motion_planning.global_planner.sample_search.informed_rrt.InformedRRT
¶
Bases: RRTStar
Class for Informed RRT* motion planning.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
start
|
tuple
|
start point coordinate |
required |
goal
|
tuple
|
goal point coordinate |
required |
env
|
Env
|
environment |
required |
max_dist
|
float
|
Maximum expansion distance one step |
0.5
|
sample_num
|
int
|
Maximum number of sample points |
1500
|
r
|
float
|
optimization radius |
12.0
|
goal_sample_rate
|
float
|
heuristic sample |
0.05
|
Examples:
Python Console Session
>>> import python_motion_planning as pmp
>>> planner = pmp.InformedRRT((5, 5), (45, 25), pmp.Map(51, 31))
>>> cost, path, expand = planner.plan() # planning results only
>>> planner.plot.animation(path, str(planner), cost, expand) # animation
>>> planner.run() # run both planning and animation
References
[1] Optimal Sampling-based Path Planning Focused via Direct Sampling of an Admissible Ellipsoidal heuristic
generateRandomNode()
¶
Generate a random node to extend exploring tree.
Returns:
Name | Type | Description |
---|---|---|
node |
Node
|
a random node based on sampling |
plan()
¶
Informed-RRT* motion plan function.
Returns:
Name | Type | Description |
---|---|---|
cost |
float
|
path cost |
path |
list
|
planning path |
expand |
list
|
expanded (sampled) nodes list |
run()
¶
Running both plannig and animation.