AStar¶
python_motion_planning.global_planner.graph_search.a_star.AStar
¶
Bases: GraphSearcher
Class for A* motion planning.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
start
|
tuple
|
start point coordinate |
required |
goal
|
tuple
|
goal point coordinate |
required |
env
|
Env
|
environment |
required |
heuristic_type
|
str
|
heuristic function type |
'euclidean'
|
Examples:
Python Console Session
>>> import python_motion_planning as pmp
>>> planner = pmp.AStar((5, 5), (45, 25), pmp.Grid(51, 31))
>>> cost, path, expand = planner.plan() # planning results only
>>> planner.plot.animation(path, str(planner), cost, expand) # animation
>>> planner.run() # run both planning and animation
References
[1] A Formal Basis for the heuristic Determination of Minimum Cost Paths
extractPath(closed_list)
¶
Extract the path based on the CLOSED list.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
closed_list
|
dict
|
CLOSED list |
required |
Returns:
Name | Type | Description |
---|---|---|
cost |
float
|
the cost of planned path |
path |
list
|
the planning path |
getNeighbor(node)
¶
Find neighbors of node.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
node
|
Node
|
current node |
required |
Returns:
Name | Type | Description |
---|---|---|
neighbors |
list
|
neighbors of current node |
plan()
¶
A* motion plan function.
Returns:
Name | Type | Description |
---|---|---|
cost |
float
|
path cost |
path |
list
|
planning path |
expand |
list
|
all nodes that planner has searched |
run()
¶
Running both planning and animation.