SThetaStar¶
src.python_motion_planning.global_planner.graph_search.s_theta_star.SThetaStar
¶
Bases: ThetaStar
Class for S-Theta* motion planning.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
start
|
tuple
|
start point coordinate |
required |
goal
|
tuple
|
goal point coordinate |
required |
env
|
Env
|
environment |
required |
heuristic_type
|
str
|
heuristic function type |
'euclidean'
|
Examples:
Python Console Session
>>> import python_motion_planning as pmp
>>> planner = pmp.SThetaStar((5, 5), (45, 25), pmp.Grid(51, 31))
>>> cost, path, expand = planner.plan()
>>> planner.plot.animation(path, str(planner), cost, expand) # animation
>>> planner.run() # run both planning and animation
References
[1] S-Theta*: low steering path-planning algorithm
Source code in src\python_motion_planning\global_planner\graph_search\s_theta_star.py
Python
class SThetaStar(ThetaStar):
"""
Class for S-Theta* motion planning.
Parameters:
start (tuple): start point coordinate
goal (tuple): goal point coordinate
env (Env): environment
heuristic_type (str): heuristic function type
Examples:
>>> import python_motion_planning as pmp
>>> planner = pmp.SThetaStar((5, 5), (45, 25), pmp.Grid(51, 31))
>>> cost, path, expand = planner.plan()
>>> planner.plot.animation(path, str(planner), cost, expand) # animation
>>> planner.run() # run both planning and animation
References:
[1] S-Theta*: low steering path-planning algorithm
"""
def __init__(self, start: tuple, goal: tuple, env: Env, heuristic_type: str = "euclidean") -> None:
super().__init__(start, goal, env, heuristic_type)
def __str__(self) -> str:
return "S-Theta*"
def plan(self) -> tuple:
"""
S-Theta* motion plan function.
Returns:
cost (float): path cost
path (list): planning path
expand (list): all nodes that planner has searched
"""
# OPEN list (priority queue) and CLOSED list (hash table)
OPEN = []
heapq.heappush(OPEN, self.start)
CLOSED = dict()
while OPEN:
node = heapq.heappop(OPEN)
# exists in CLOSED list
if node.current in CLOSED:
continue
# goal found
if node == self.goal:
CLOSED[node.current] = node
cost, path = self.extractPath(CLOSED)
return cost, path, list(CLOSED.values())
for node_n in self.getNeighbor(node):
# exists in CLOSED list
if node_n.current in CLOSED:
continue
# path1
node_n.parent = node.current
node_n.h = self.h(node_n, self.goal)
alpha = 0.0
node_p = CLOSED.get(node.parent)
if node_p:
alpha = self.getAlpha(node_p, node_n)
node_n.g += alpha
if node_p:
self.updateVertex(node_p, node_n, alpha)
# goal found
if node_n == self.goal:
heapq.heappush(OPEN, node_n)
break
# update OPEN list
heapq.heappush(OPEN, node_n)
CLOSED[node.current] = node
return [], [], []
def updateVertex(self, node_p: Node, node_c: Node, alpha: float) -> None:
"""
Update extend node information with current node's parent node.
Parameters:
node_p (Node): parent node
node_c (Node): current node
alpha (float): alpha angle
"""
# if alpha == 0 or self.lineOfSight(node_c, node_p): # "alpha == 0" will cause the path to penetrate obstacles
if self.lineOfSight(node_c, node_p):
# path 2
new_g = node_p.g + self.dist(node_c, node_p) + alpha
if new_g <= node_c.g:
node_c.g = new_g
node_c.parent = node_p.current
def getAlpha(self, node_p: Node, node_c: Node):
"""
α(t) represents the deviation in the trajectory to reach the goal node g
through the node t in relation to the straight-line distance between the parent of its
predecessor (t ∈ succ(p) and parent(p) = q) and the goal node.
Parameters:
node_p (Node): parent node
node_c (Node): current node
Returns:
alpha (float): alpha angle
"""
d_qt = self.dist(node_p, node_c)
d_qg = self.dist(node_p, self.goal)
d_tg = self.dist(node_c, self.goal)
value = (d_qt * d_qt + d_qg * d_qg - d_tg * d_tg) / (2.0 * d_qt * d_qg)
value = max(-1.0, min(1.0, value))
cost = acos(value)
return cost
getAlpha(node_p, node_c)
¶
α(t) represents the deviation in the trajectory to reach the goal node g through the node t in relation to the straight-line distance between the parent of its predecessor (t ∈ succ(p) and parent(p) = q) and the goal node.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
node_p
|
Node
|
parent node |
required |
node_c
|
Node
|
current node |
required |
Returns:
Name | Type | Description |
---|---|---|
alpha |
float
|
alpha angle |
Source code in src\python_motion_planning\global_planner\graph_search\s_theta_star.py
Python
def getAlpha(self, node_p: Node, node_c: Node):
"""
α(t) represents the deviation in the trajectory to reach the goal node g
through the node t in relation to the straight-line distance between the parent of its
predecessor (t ∈ succ(p) and parent(p) = q) and the goal node.
Parameters:
node_p (Node): parent node
node_c (Node): current node
Returns:
alpha (float): alpha angle
"""
d_qt = self.dist(node_p, node_c)
d_qg = self.dist(node_p, self.goal)
d_tg = self.dist(node_c, self.goal)
value = (d_qt * d_qt + d_qg * d_qg - d_tg * d_tg) / (2.0 * d_qt * d_qg)
value = max(-1.0, min(1.0, value))
cost = acos(value)
return cost
plan()
¶
S-Theta* motion plan function.
Returns:
Name | Type | Description |
---|---|---|
cost |
float
|
path cost |
path |
list
|
planning path |
expand |
list
|
all nodes that planner has searched |
Source code in src\python_motion_planning\global_planner\graph_search\s_theta_star.py
Python
def plan(self) -> tuple:
"""
S-Theta* motion plan function.
Returns:
cost (float): path cost
path (list): planning path
expand (list): all nodes that planner has searched
"""
# OPEN list (priority queue) and CLOSED list (hash table)
OPEN = []
heapq.heappush(OPEN, self.start)
CLOSED = dict()
while OPEN:
node = heapq.heappop(OPEN)
# exists in CLOSED list
if node.current in CLOSED:
continue
# goal found
if node == self.goal:
CLOSED[node.current] = node
cost, path = self.extractPath(CLOSED)
return cost, path, list(CLOSED.values())
for node_n in self.getNeighbor(node):
# exists in CLOSED list
if node_n.current in CLOSED:
continue
# path1
node_n.parent = node.current
node_n.h = self.h(node_n, self.goal)
alpha = 0.0
node_p = CLOSED.get(node.parent)
if node_p:
alpha = self.getAlpha(node_p, node_n)
node_n.g += alpha
if node_p:
self.updateVertex(node_p, node_n, alpha)
# goal found
if node_n == self.goal:
heapq.heappush(OPEN, node_n)
break
# update OPEN list
heapq.heappush(OPEN, node_n)
CLOSED[node.current] = node
return [], [], []
updateVertex(node_p, node_c, alpha)
¶
Update extend node information with current node's parent node.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
node_p
|
Node
|
parent node |
required |
node_c
|
Node
|
current node |
required |
alpha
|
float
|
alpha angle |
required |
Source code in src\python_motion_planning\global_planner\graph_search\s_theta_star.py
Python
def updateVertex(self, node_p: Node, node_c: Node, alpha: float) -> None:
"""
Update extend node information with current node's parent node.
Parameters:
node_p (Node): parent node
node_c (Node): current node
alpha (float): alpha angle
"""
# if alpha == 0 or self.lineOfSight(node_c, node_p): # "alpha == 0" will cause the path to penetrate obstacles
if self.lineOfSight(node_c, node_p):
# path 2
new_g = node_p.g + self.dist(node_c, node_p) + alpha
if new_g <= node_c.g:
node_c.g = new_g
node_c.parent = node_p.current